## VORTEX

## LES 10-minute Time Series*

* Explained in less than 10 minutes


## VORTEX

## LES 10-minute Time Series*

* Explained in less than 10 minutes... ${ }^{\dagger}$
$\dagger$...if there are no questions


## How can wind resource be estimated?

## On-site measurements



- Accurate and characterizes local effects.
- Multi-level meteorological towers and LIDARs estimate vertical profile.
( Installation and maintenance is expensive
( ) Require long-term datasets (10, 20 or even 30 years)


## Reanalysis

Observations (weather stations, soundings, satellite, buoys, radar) coupled with meteorological model


## Reanalysis

Different datasets: ERA5 (ECMWF), MERRA2 (NASA) and CFSR (NOAA).

(2) Highest horizontal resolution is 0.25 degrees $(\sim 27 \mathrm{~km})$
( Spatial resolution is insufficient for local effects

## Mesoscale models

- Use reanalysis as initial and boundary conditions
- Turbulence + local effects not solved but parametrized.
- High resolution by using multiple nested domains


WRF model parent and nested domains Credit National Center for Atmospheric Research (NCAR)

## Computational Fluid Dynamics

- CFD simulates very fine motion scales of a fluid
- Explicitly resolves turbulence
( High computational cost.
© Limited to small regions.


CFD simulation of air flow around the Space Shuttle during re-entry. Credit NASA

## Meteorological scales



Credit: Alex Montornès 2018

## Turbulence

- It's a small-scale and irregular air motion (variations in wind speed and direction).
- Mechanical: Friction between the air and the ground, especially irregular terrain, causes eddies.
- Thermal: Solar radiation heats the surface, the air above it becomes warmer and more buoyant (convection).


Thermal and mechanical turbulence. Credit Shutterstock

## Large Eddy Simulations

- Large eddies, containing most of the turbulent energy, are explicitly solved
- Eddies smaller than the filtering threshold are modeled and their effect is calculated. (Sub-Grid Scale)
- LES reduces the computational cost by parametrizing the smallest length scales.



## Methodology

- In a mesoscale simulation, turbulence is parametrized in the PBL scheme due to the spatial and temporal resolution.
- Microscale domains start with horizontally homogeneous non-turbulent fields interpolated from the last mesoscale grid
- These initial conditions inhibit the mechanical turbulence, only thermal turbulence can be developed.


Credit Alex Montornès 2018

## Methodology

- As turbulence is developed at the center of the domain, it is destroyed by the non-turbulent LBC
- Random perturbations of the potential temperature are applied to some points at the boundary of the microscale domain.
- This perturbation introduces horizontal and vertical inhomogeneities that accelerate production of mechanical turbulence.

Perturbed WRF-LES


Credit Alex Montornès 2018

## Methodology

- Model output are saved at a frequency of $4 \mathrm{~Hz}(0.25 \mathrm{~s})$
- Wind, temperature, pressure, air density and moisture are aggregated into 10-min values:

$$
\bar{M}=\frac{1}{2400} \sum_{0}^{2399} m_{i}
$$

- Gusts are averaged for every 3-second interval, keeping the maximum value for the 10-min

$$
\text { Gust3sec }=\max \left(U_{1}, U_{2}, \ldots, U_{800}\right)
$$

- Turbulence intensity is calculated from wind speed standard deviation

$$
T I=\frac{\sigma M}{\bar{M}}
$$

## Vortex LES

- 10-minute time series at 100 m horizontal resolution.
- 1-full year period: selectable or long-term representative.



## Vortex LES

- 10-minute time series at 100 m horizontal resolution.
- 1-full year period: selectable or long-term representative.



## Validation

- Wind speeds validated in 100 sites worldwide.
- Turbulence intensity validated in 50 sites.



## Validation

| Wind speeds | Average | Std Dev |
| :--- | ---: | ---: |
| MAE (\%) | 8.3 | 4.3 |
| A-shape (\%) | 8.2 | 5.0 |
| k-shape(\%) | 9.3 | 6.1 |
| R2 10-min | 0.59 | 0.09 |
| R2 hourly | 0.62 | 0.09 |
| R2 daily | 0.80 | 0.09 |


| Turbulence | Average | Std Dev |
| :--- | ---: | ---: |
| MAE (\%) | 1.8 | 0.9 |
| MAE-15 (\%) | 1.9 | 1.1 |

## References

- Montornès, Alex and Kosovic, Branko (2016): WRF-LES in the real world: Towards a seamless modeling chain for wind industry applications 17th Annual WRF Users' Workshop. Boulder, Colorado.
DOI:10.13140/RG.2.1.2270.1041
- Montornès, Alex (2016) Is WRF-LES a Suitable Tool for Realistic Turbulence Analyses in Wind Resource Assessment Applications? 22nd Symposium on Boundary Layers and Turbulence (AMS) Salt Lake City. DOI:10.13140/RG.2.1.3974.0400

